Oracle 12c Snapshot Standby Database szerepe és konfigurálása Gecseg Gyula Oracle DBA

- G

Oracle user konferencia

Bevezetés

Az Oracle a 11g verzióban vezette be a Snapshot Standby feature-t, lényege hogy megengedi a read-write műveleteket a Standby adatbázison. Nagy előnye, hogy minden tesztet képesek vagyunk elvégezni a Produktív környezet adataival anélkül hogy az éles Produktív környezet adatait veszélyeztetnénk.

- Egy Snapshot Standby adatbázis megkapja az archive logokat a Primary adatbázisból, de nem alkalmazza őket
- Az összes rendelkezésre álló redo log akkor lesz alkalmazva, amikor a Snapshot Standby vissza lesz konvertálva Physical standby adatbázissá

A tesztek elvégzése után az adatbázist visszaállítjuk a Flashback Database funkcióval, majd visszakonvertáljuk Physical Standby database állapotba.

Flashback Database előnyei Data Guard környezetben

Az Oracle Flashback adatbázis-technológiájával gyorsan hozhatja az adatbázist egy korábbi időpontba azáltal, hogy visszavonja az azóta történt változásokat. Az adatbázis visszajátszást (replay) képesek vagyunk futtatni többször is a teszt rendszeren a produktív rendszer pontos időzítésével, tranzakciós jellemzőivel és terhelésével. Előnyei:

Lekérdezések hangolása

- Az alkalmazásgazdák meg tudják nyitni egy korábbi időpontra és különböző lekérdezéseket tudnak futtatni rajta.
- Ideális valós alkalmazás teszteléshez
- Nincs szükség extra storage területre
- katasztrófavédelem (Disaster recovery) fenntartása tesztelés közben

Real Application Testing (RAC) környezethez köthető előnyök Database Rplay esetén

Az adatbázis és a rendszergazdák tesztelhetik az adatbázis frissítéseket, javításokat, paraméterváltozásokat.
 Konfiguráció változtatásokat

- Konverzió single példányból RAC ASM-re
- Storage, hálózat változtatások (interconnect changes)
- Operációs rendszer, hardver migrációk, javítások, frissítések, paraméterváltoztatások
- SQL Performance Analyzer használata (a Real Application Testing része)

Flashback Database előnyei Data Guard környezetben

SQL Performance Analyzer (Real Application Testing) használata

Az SQL Performance Analyzer-t a egy Snapshot Standby adatbázis példányon futtattjuk, a Snapshot Standby adatbázisnak előfeltétele a Flashback Database.

Adatbázis frissítés, javítások, inicializálási paraméterek változása
Az operációs rendszer, a hardver vagy az adatbázis konfigurációs változásai
A séma változásai, mint például új indexek, partíciók vagy materializált nézetek
Optimalizáló statisztikák összegyűjtése
SQL hangolási műveletek, például SQL profilok létrehozása
Adatbázis konszolidációs tesztelés az Oracle Multitenant
vagy séma konszolidáció segítségével

Prepare the Primary database 1. Engedélyezzük az archive módot:

sq∟> SQL> select `	log_mode fr	om v\$datab	ase;	
LOG_MODE				
ARCHIVELOG				
SQL>				

Prepare the Primary database 2. Engedélyezzük a force loging módot:

SQL> select force_logging from v\$database;

FORCE_LOGGING

/ES

SQL>

Prepare the Primary database 3. Konfiguráljuk a "Standby-Redo log" fajlt, ezeket fogja használni "switchover vagy failover" esetén.

QL> select GROUP#, BYTES/1024/1024, STATUS, FIRST_TIME, NEXT_TIME from v\$standby_log;

ROUP# BYTES/1024/1024 STATUS FIRST_TIM NEXT_TIME

Prepare the Primary database 4. Állítsuk be a Primary adatbázis inicializációs paramétereit.

alter system set log_archive_dest_1='LOCATION=use db_recovery_file_dest valid_for=(ALL_ROLES,ALL_LOGFILES) db_unique_name="TEST" scope=both sid='*'; alter system set log_archive_dest_2='service='TEST_ST"','ASYNC_NOAFFIRM delay=0 optional compression=disable max_failure=0 max_connections=1 reopen=300 db_unique_name="TEST_ST" net_timeout=30' 'valid_for=(online_logfile,all_roles)' scope=both sid='*'; alter system set log_archive_dest_state_2=defer_scope=both sid='*'; alter system set standby_file_management=auto_scope=both_sid='*'; alter system set log_archive_config='dg_config='TEST_ST' scope=both_sid='*'; alter system set log_archive_config='dg_config='TEST_ST' scope=both_sid='*'; alter system set dg_broker_start=TRUE_scope=both_sid='*'; alter system set fal_client='TEST_ST' scope=both_sid='*'; alter system set fal_client='TEST_ST' scope=both_sid='*'; alter system set fal_server='TEST_Scope=both_sid='*'; alter system set fal_server='TEST_scope=foth_sid='*'; alter system set f

Prepare the Primary database 5. Konfiguráljuk a listener.ora és a tnsnames.ora fájlt.

```
ISTENER =
 (DESCRIPTION LIST =
   (DESCRIPTION =
     (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
     (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
ID_LIST_LISTENER =
 (SID LIST =
 (SID_DESC =
    (GLOBAL DBNAME = TEST)
     (ORACLE HOME = /oracle/12.2.0.2/12.1.0)
     (SID_NAME = TEST)
 (SID_DESC =
    (GLOBAL DBNAME = TEST ST)
    (ORACLE_HOME = /oracle/12.2.0.2/12.1.0)
    (SID_NAME = TEST_ST)
  (SID_DESC =
     (GLOBAL_DBNAME = TEST_ST1)
     (ORACLE_HOME = /oracle/12.2.0.2/12.1.0)
     (SID NAME = TEST ST1)
  (SID DESC =
     (GLOBAL DBNAME = TEST DGMGRL)
     (ORACLE HOME = /oracle/12.2.0.2/12.1.0)
    (SID_NAME = TEST)
 (SID_DESC =
     (GLOBAL DBNAME = TEST ST DGMGRL)
     (ORACLE_HOME = /oracle/12.2.0.2/12.1.0)
     (SID NAME = TEST ST)
  (SID DESC =
    (GLOBAL_DBNAME = TEST_ST1_DGMGRL)
    (ORACLE_HOME = /oracle/12.2.0.2/12.1.0)
     (SID_NAME = TEST_ST1_DGMGRL)
```

Prepare the Primary database 5. Konfiguráljuk a listener.ora és a tnsnames.ora fájlt.

```
ISTENER TEST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
TEST ST =
 (DESCRIPTION =
   (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
   (CONNECT DATA =
     (SERVER = DEDICATED)
     (SERVICE NAME = TEST ST)
TEST =
 (DESCRIPTION =
   (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
   (CONNECT DATA =
     (SERVER = DEDICATED)
     (SERVICE NAME = TEST)
TEST ST1 =
 (DESCRIPTION =
   (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
   (CONNECT DATA =
     (SERVER = DEDICATED)
     (SERVICE NAME = TEST ST1)
```

Prepare the Standby database 6. Hozzuk létre a standby adatbázis számára szükséges könyvtárakat.

#mkdir \$ORACLE_BASE/admin/TEST_ST
#mkdir \$ORACLE_BASE/admin/TEST_ST/adump
#mkdir \$ORACLE_BASE/admin/TEST_ST/cdump
#mkdir \$ORACLE_BASE/admin/TEST_ST1
#mkdir \$ORACLE_BASE/admin/TEST_ST1/adump
#mkdir \$ORACLE_BASE/admin/TEST_ST1/cdump

Prepare the Standby database 7. Hozzuk létre a szükséges init.ora fájlt.

Alkalmazások Helyek Terminál sze 13.31 **▲**0 (1) ÷. oracle@localhost:~/ora-script/stanby × • Fáil Szerkesztés Nézet Keresés Terminál Súgó icalhost stanbyls more /oracle/12.2.0.2/12.1.0/dbs/init_test_st.ora practe base='/gracle/12.2.0.2'WORACLE BASE set from environment sga_target=524288000 ST ST. ST ST. archive_lag_target=0 audit_file_dest="/oracle/12.2.0.2/admin/TEST/adump control_files+'/oracle/oradata/TEST_ST/control01.ctl'#Restore Controlfile db block slzg=8192 db domation dg broker_start=THUE log archive config='dg config=(TEST,TEST_ST)'
log archive dest_l='LOCATION=/oracle/oradata/TEST_ST/arch/' log archive min succeed destal pgs_aggregate_target=200m remote_login_passwordfile='EXCLUSIVE'
sgh_max_sizu=524288000 oracle@localhost:~ oracle@localhost:~/ora-scri... oracle@localhost:~ [oracle@localhost:+-] standby-dok.docx - LibreOff... Creating an Oracle Physical 1/4

Prepare the Standby database 8. A standby adatbázis számára hozzunk létre egy password fájlt.

orapwd file=/oracle/12.2.0.2/12.1.0/dbs/orapwTEST_ST password=valami entries=10

9. Indítsuk el a standby instance-t nomount-tal.

[oracle@localhost stanby]\$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Wed Feb 27 14:14:10 2019

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to an idle instance.

SQL> startup nomount pfile='/oracle/12.2.0.2/12.1.0/dbs/init_test_st.ora';

Prepare the Standby database 10. Kapcsolódjunk az RMAN TARGET-hez.

#rman target sys/valami@TEST auxiliary sys/valami@TEST_ST1

11. Használjuk a "DUPLICATE DATABASE" parancsot.

Prepare the Standby database 11. Használjuk a "DUPLICATE DATABASE" parancsot.

run {

duplicate target database for standby from active database

spfile

- set 'db_unique_name'='TEST_ST'
- set 'cluster_database'='false'
- set 'db_create_online_log_dest_1'='/oracle/oradata/TEST_ST'
- set 'log_file_name_convert'='/oracle/oradata/TEST','/oracle/oradata/TEST_ST'
- set db_recovery_file_dest_size='5G'
- SET SGA_MAX_SIZE '500M'
- SET SGA_TARGET '500M'
- set CONTROL_FILES='/oracle/oradata/TEST_ST/control01.ctl'
- set dg_broker_config_file1='/oracle/12.1.0/dbs/dr1test_st.dat'
- set dg_broker_config_file2='/oracle/12.1.0/dbs/dr2test_st.dat'

nofilenamecheck

Prepare the Standby database

12. Állítsuk be a standby adatbázis inicializációs paramétereit.

[oracle@localhost stanby]\$ cat test-dr-para-st.txt alter system set log_archive_config='dg_config=(TEST,TEST_ST)' scope=both sid='*'; alter system set dg_broker_config_file1='/oracle/12.2.0.2/12.1.0/dbs/dr1TEST_ST' scope=both sid='*'; alter system set dg_broker_config_file2='/oracle/12.2.0.2/12.1.0/dbs/dr2TEST_ST' scope=both sid='*'; alter system set dg_broker_start=TRUE scope=both sid='*'; alter system set fal_client='TEST_ST' scope=both sid='*'; alter system set fal_server='TEST' scope=both sid='*'; alter system set fal_server='TEST' scope=both sid='*'; alter system set DB_FILE_NAME_CONVERT='/oracle/oradata/TEST','/oracle/oradata/TEST_ST' scope=spfile sid='*'; alter system set log_file_name_convert='/oracle/oradata/TEST','/oracle/oradata/TEST_ST' scope=spfile sid='*'; alter system set "_query_on_physical"=false sid='*'; alter system set remote_os_authent = FALSE scope=both sid='*';

Prepare the Primary database

13. Primary és Standby adatbázis státusz és szinkron ellenőrzése.

SQL> select name, open_mode, database_role from v\$database;

IAME	OPEN MODE	DATABASE ROLE

FEST READ WRITE PRIMARY

Prepare the Standby database 13. Primary és Standby adatbázis státusz és szinkron ellenőrzése.

SQL> select	status, instance_	name, database_ro	le, open_mode from v\$	database,	v\$instance;	
STATUS	INSTANCE_NAME	DATABASE_ROLE	OPEN_MODE			
MOUNTED	TEST_ST	PHYSICAL STANDBY	MOUNTED			
S0I >						
-1						
Thread	I Last Sequenc	e Received Las	t Sequence Appli	led Diffe	rence	
		 62		67 67	0	
		02		02	U	
501 >						

Prepare the Standby database 13. Primary és Standby adatbázis státusz és szinkron ellenőrzése.

SQL> select	status, instance_	name, database_ro	le, open_mode from	v\$database,	v\$instance;
STATUS	INSTANCE_NAME	DATABASE_ROLE	OPEN_MODE		
10UNTED	TEST_ST1	PHYSICAL STANDBY	MOUNTED		
-					
Thread	Last Sequence R	eceived Last Se	quence Applied D	ifference	
1		62	62	 0	
501 >					

Prepare the Standby database 14. Indítsuk el az archive fájlok rágörgetését.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Database altered.

5UL>

SQL> SQL> select	GROUP#, BYTES/1024	4/1024, STATUS,	FIRST_TIME,	NEXT_TIME f	rom v\$standby_	log;
GROUP# E	SYTES/1024/1024 ST	ATUS FIRST_	TIM NEXT_TIM	E		
4 5 6 7	55 UN/ 55 ACT 55 UN/ 55 UN/	ASSIGNED FIVE 27-FEB ASSIGNED ASSIGNED	-19			
SQL> ALTER [ATABASE RECOVER MA	ANAGED STANDBY	DATABASE USI	NG CURRENT L	OGFILE disconn	ect;
Database alt	ered.					

Prepare the Primary and Standby database Konfiguráljuk a Data Guard Broker-t. 15.

DGMGRL>

DGMGRL> CREATE CONFIGURATION test dg config AS PRIMARY DATABASE IS TEST CONNECT IDENTIFIER IS TEST;

DGMGRL> OGMGRL> CREATE CONFIGURATION test dg config AS PRIMARY DATABASE IS TEST CONNECT IDENTIFIER IS TEST;

UGPIGRE> DGMGRL> ENABLE CONFIGURATION;

JGMGRL> DGMGRL> SHOW CONFIGURATION;

Configuration - test dg config

Protection Mode: MaxPerformance

Members: test - Primary database

TEST ST - Physical standby database

TEST ST1 - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status: (status updated 43 seconds ago) SUCCESS

Prepare the Primary and Standby database 15. Konfiguráljuk a Data Guard Broker-t.

DGMGRL> show database "TEST_ST1"

Database - TEST_ST1

Role:	PHYSICAL STANDBY
Intended State:	APPLY-ON
Transport Lag:	0 seconds (computed 1 second ago)
Apply Lag:	0 seconds (computed 1 second ago)
Average Apply Rate:	0 Byte/s
Real Time Query:	OFF
Instance(s):	
TEST_ST1	

Database Status: SUCCESS

Prepare the Standby database

16. Konvertáljuk a physical standby adatbázist – snapshot standby adatbázissá

DGMGRL> convert database "TEST_ST1" to snapshot standby; Converting database "TEST_ST1" to a Snapshot Standby database, please wait... Database "TEST_ST1" converted successfully

17. Konvertáljuk a snapshot standby adatbázist physical standby adatbázissá

DGMGRL> convert database "TEST_ST1" to physical standby; Converting database "TEST_ST1" to a Physical Standby database, please wait... Database "TEST_ST1" converted successfully